the Euler characteristic of the intersection of Bruhat cells.
In 2017, we showed that 1-, 2-, and 3-step Schubert calculus puzzles could be derived as a $q \rightarrow 0$ limit of an A_{2}, D_{4}, E_{6} quantum integrable system (respectively). We show here that the $q \neq 0$ systems compute a richer product of "Segre-Schwartz-MacPherson" classes most naturally defined not on those flag manifolds, but on their cotangent bundles. As a consequence, we obtain (again for up to 3 -step) a positive formula for the Euler characteristic of the intersection of three generically situated Bruhat cells (times the usual K-theoretic sign, although, this is not a K-theoretic calculation). We conjecture that this signed positivity holds for general G / P. (Received January 18, 2021)

